CSC 2224: Parallel Computer
Architecture and Programming
Parallel Processing, Multicores

Prof. Gennady Pekhimenko
University of Toronto
Fall 2019

The content of this lecture is adapted from the lectures of
Onur Mutlu @ CMU

Summary

* Parallelism
* Multiprocessing fundamentals
 Amdahl’s Law

* Why Multicores?

— Alternatives
— Examples

Flynn’s Taxonomy of Computers

Mike Flynn, “Very High-Speed Computing Systems,” Proc. of
IEEE, 1966

SISD: Single instruction operates on single data element
SIMD: Single instruction operates on multiple data elements
— Array processor

— Vector processor

MISD: Multiple instructions operate on single data element

— Closest form: systolic array processor, streaming processor

MIMD: Multiple instructions operate on multiple data elements
(multiple instruction streams)

— Multiprocessor
— Multithreaded processor

Why Parallel Computers?

Parallelism: Doing multiple things at a time
Things: instructions, operations, tasks
Main Goal: Improve performance (Execution time or task
throughput)
e Execution time of a program governed by Amdahl’s Law
Other Goals
— Reduce power consumption
* (4N units at freq F/4) consume less power than (N units at
freq F)
* Why?
— Improve cost efficiency and scalability, reduce complexity

* Harder to design a single unit that performs as well as N

simpler units ,

Types of Parallelism & How to Exploit Them

* Instruction Level Parallelism

— Different instructions within a stream can be executed in parallel
— Pipelining, out-of-order execution, speculative execution, VLIW
— Dataflow

e Data Parallelism

— Different pieces of data can be operated on in parallel
— SIMD: Vector processing, array processing
— Systolic arrays, streaming processors

e Task Level Parallelism

— Different “tasks/threads” can be executed in parallel
— Multithreading
— Multiprocessing (multi-core)

Task-Level Parallelism

e Partition a single problem into multiple related tasks
(threads)

— Explicitly: Parallel programming
* Easy when tasks are natural in the problem
e Difficult when natural task boundaries are unclear
— Transparently/implicitly: Thread level speculation
* Partition a single thread speculatively
 Run many independent tasks (processes) together
— Easy when there are many processes
* Batch simulations, different users, cloud computing

— Does not improve the performance of a single task

Multiprocessing Fundamentals

Multiprocessor Types

* Loosely coupled multiprocessors
— No shared global memory address space

— Multicomputer network
* Network-based multiprocessors

— Usually programmed via message passing
* Explicit calls (send, receive) for communication

Multiprocessor Types (2)

* Tightly coupled multiprocessors
— Shared global memory address space

— Traditional multiprocessing: symmetric
multiprocessing (SMP)
 Existing multi-core processors, multithreaded processors
— Programming model similar to uniprocessors (i.e.,
multitasking uniprocessor) except
* Operations on shared data require synchronization

Main Issues in Tightly-Coupled MP

Shared memory synchronization
— Locks, atomic operations

Cache consistency
— More commonly called cache coherence

Ordering of memory operations
— What should the programmer expect the hardware to provide?

Resource sharing, contention, partitioning
Communication: Interconnection networks
Load imbalance

10

Metrics of Multiprocessors

Parallel Speedup

Time to execute the program with 1 processor
divided by
Time to execute the program with N processors

12

Parallel Speedup Example

. 4 3 2
a, X" +ax +ax +ax+a
* Assume each operation 1 cycle, no

communication cost, each op can be executed in
a different processor

* How fast is this with a single processor?

— Assume no pipelining or concurrent execution of
Instructions

13

R= Q&x" + aaxs + a,_'x" + a.% + Gg

Srgle prvesse— 11— oporvtrms (daﬁ%?fws}

Parallel Speedup Example

. 4 3 2
a, X" +ax +ax +ax+a
* Assume each operation 1 cycle, no

communication cost, each op can be executed in
a different processor

* How fast is this with a single processor?

— Assume no pipelining or concurrent execution of
Instructions

* How fast is this with 3 processors?

15

B s ok wasktF apkty o0 ¥ 0

S

Three praa-SSG;"S : T (emcedwmce wih 3 poe.)
% :; - Qg X Gg)
() 5 en, <.
Q
4 : AT
\ ‘ N =Y o Qo
Oz U -l oy O ¥ e

o)
1)
U
Vi
X
I

Speedup with 3 Processors
T3 = 5 Cydé%

| S

:51.>
Ts

s s a fowv compricen?

17

Revisiting the Single-Processor
Re visit E_{_.

BCAM‘ -C:»‘ﬁ&,\&—,orc ceSS O\Syt}”m:

28

3

G Mh " gen™ L n, X 4= 6 40

K :(((aq)(—}‘a‘&BX -+ OL>X -+ C‘,>X + Qo

(}”“}OY‘/\U“S et ch >

Horner, “A new method of solving numerical equations of all orders, by continuous
approximation,” Philosophical Transactions of the Royal Society, 1819.

18

Takeaway

* To calculate parallel speedup fairly you need to
use the best known algorithm for each system
with N processors

* If not, you can get superlinear speedup

20

Superlinear Speedup

e Can speedup be greater than P with P processing

elements?

* Consider:
— Cache effects
— Memory effects
— Working set
* Happens in two ways:
— Unfair comparisons
— Memory effects

Parallel
Speedup

21

4

4

Superlinear ¢

Typical
Success

—» # Processors

Redw\dma’: : H"(MJ v exra wr'k, due 4tz MJWW

R— o OPS- w a4 pmc_be‘s_ - 10

besk

0,0.Q wirh, 1 pvec.
R s alwoyg >/ 1

EH"“W Hun mudh resource e use covyered v how

rvOh BSVTC Wt Con §ed Gty W

jE E TbeS\‘ (-k,ma ve 1 W '[‘r Mmﬂ-s)
Thcs\- <l'yoﬁsbp PP’““G"’tPMM)

S - T E-~U - | '
15 (E} 7%

Caveats of Parallelism (i)

Specdwp

A

1 | ' P(# Cfpmt“"‘")

Why +re cealos — (donmhmg rehns)

_Z;,:* el g = (‘l—oc>.T;
P
PSR o W R

\1: L3 non- pratelrzeble. oo+

PW‘G“O“ zaho)e pot é—/qCaa}m
of The Smge-processc
progf‘kv\

Amdahl’s Law

'rh
P proc. TP | % o i (/”'OCB
GS P—-’OO '1 —@\9 b eredk Fz/' }oo’aﬂdf

Specedse

Amdahl, “Validity of the single processor approach to
achieving large scale computing capabilities,” AFIPS 1967.

24

Amdahl’s Law

— f: Parallelizable fraction of a program
— P: Number of processors

1

Speedup = =

P

1-f +

e Maximum speedup limited by serial portion:
Serial bottleneck

25

Amdahl’s Law Implication 1

Speedup)
o< = .99
<= . aS
o= + Y
— —

26

Amdu h's

L_onn
il usf)wr“c»*r,a{

Addmeg moe and moe
Processo s gGures less @ Jess

Amdahl’s Law Implication 2

Spocuf 1\

S oy Wl
: P, Tre bercfA (s,ae»dvp)
/ I5 srmoll i)l gL]
S 4

O'J-

27

Why the Sequential Bottleneck?

* Parallel machines have the
sequential bottleneck

* Main cause:
Non-parallelizable
operations on data (e.g.

non-parallelizable loops)
for(i=0;i<N;i++)
Ali] = (A[i] + A[i-1]) / 2
* Single thread prepares data
and spawns parallel tasks

M

28

Another Example of Sequential Bottleneck

InitPriorityQueue(PQ); LEGEND
A.E: Amdahl's serial part
SpawnThreads(); @ B: Parallel Portion
: C1,C2: Critical Sections
ForEach; Thread: D: Outside critical section

~

(while (problem not solved)

Lock (X)
SubProblem = PQ.remove(); @
Unlock(X);

Solve(SubProblem);

If(problem solved) break;

NewSubProblems = Partition(SubProblem);

Lock(X)
PQ.insert(NewSubProblems);| ()

Unlock(X)

PrintSolution(); @

(a)

T1'9'?......:@3:

L R Y) > en— i C> - (.7) S esss——TTTTTPT
. e I S— time,
t t t t t t t t t

begin 0 1 2 3 4 5 6 end

Caveats of Parallelism (ll)

e Amdahl’s Law

— f: Parallelizable fraction of a program
— P: Number of processors

1

Speedup =
1-f + J

* Parallel portion is usually not perfectly parallel

— Synchronization overhead (e.g., updates to shared
data)

— Load imbalance overhead (imperfect parallelization)

— Resource sharing overhead (contention among N
processors)

30

Bottlenecks in Parallel Portion

e Synchronization: Operations manipulating shared data
cannot be parallelized

— Locks, mutual exclusion, barrier synchronization
— Communication: Tasks may need values from each other

* Load Imbalance: Parallel tasks may have different
lengths

— Due to imperfect parallelization or microarchitectural effects
— Reduces speedup in parallel portion

* Resource Contention: Parallel tasks can share hardware
resources, delaying each other

— Replicating all resources (e.g., memory) expensive
— Additional latency not present when each task runs alone

31

Difficulty in Parallel Programming

* Little difficulty if parallelism is natural
— “Embarrassingly parallel” applications
— Multimedia, physical simulation, graphics
— Large web servers, databases?

e Big difficulty is in
— Harder to parallelize algorithms
— Getting parallel programs to work correctly
— Optimizing performance in the presence of bottlenecks

* Much of parallel computer architecture is about

— Designing machines that overcome the sequential and parallel bottlenecks
to achieve higher performance and efficiency

— Making programmer’s job easier in writing correct and high-performance
parallel programs

32

Parallel and Serial Bottlenecks

 How do you alleviate some of the serial and parallel
bottlenecks in a multi-core processor?

* We will return to this question in future lectures
* Reading list:
— Annavaram et al., “Mitigating Amdahl’s Law Through EPI
Throttling,” ISCA 2005.

— Suleman et al., “Accelerating Critical Section Execution with
Asymmetric Multi-Core Architectures,” ASPLOS 2009.

— Joao et al., “Bottleneck Identification and Scheduling in
Multithreaded Applications,” ASPLOS 2012.

— Ipek et al., “Core Fusion: Accommodating Software Diversity
in Chip Multiprocessors,” ISCA 2007.

33

Multicores

34

Moore’s Law

transistors
MOORE'S LAW Inteln itanium® 2 Processor 1,000,000,000
Intel® itanium® Processor
Intel” Pentium A 4 Processor | 100,000,000

| 10,000,000

~ —

1970 1975 1980 1985 1995 2008

Moore, "Cramming more components onto integrated circuits,”
Electronics, 1965.

35

Transistor count

Microprocessor Transistor Counts 1971-2011 & Moore’s Law

2,600,000,000 +
1,000,000,000

100,000,000

10,000,000

1,000,000 -

100,000

10,000

2,300 -

S

Six-Cora Xeon 7400
Cual-Core Harium 2@ \.

Itanum 2 with SME cache @

tanumZe

Pantiam 4

AMD K7
® 0D K61

16-Core SPARC T3

Caore Core I7

. @ 10-Cam Xeon Wastmam-EX

- -B-core POWER7
«— Quad- 2106
+—Guad-Core tanum Tuswib
= 8-Core Xeon EX
Six-Core Cpteron 2400
AMD K10, \Cote 7 lo.ng?'

fapeom

AMD K10

POﬂEFlG.\'

® Aiom

curve shows transistor AMD K&
count doubling every 8o, 8 Pomum s
@AMD K5
Pentium
20080
wnie
I T | 1
1971 1980 1990 2000

Date of imfgpduction

1
2011

Multi-Core

* |dea: Put multiple processors on the same die

* Technology scaling (Moore’s Law) enables more transistors
to be placed on the same die area

* What else could you do with the die area you dedicate to
multiple processors?
— Have a bigger, more powerful core
— Have larger caches in the memory hierarchy
— Simultaneous multithreading

— Integrate platform components on chip (e.g., network interface,
memory controllers)

37

Why Multi-Core?

* Alternative: Bigger, more powerful single core

— Larger superscalar issue width, larger instruction window,
more execution units, large trace caches, large branch
predictors, etc

+ Improves single-thread performance transparently to
programmer, compiler

38

Why Multi-Core?

* Alternative: Bigger, more powerful single core

- Very difficult to design (Scalable algorithms for improving
single-thread performance elusive)

- Power hungry — many out-of-order execution structures
consume significant power/area when scaled. Why?

- Diminishing returns on performance

- Does not significantly help memory-bound application
performance (Scalable algorithms for this elusive)

39

Large Superscalar+0Oo0 vs. MultiCore
* Olukotun et al., “The Case for a Single-Chip

Multiprocessor,” ASPLOS 1996.

-~ 21 mm - -21mm -
¢ T-Cache #1 (BR) | -Cache #2 (8R)
Instruction
: Cache
Instruction
Foton " | (32 KB)
TLB = Processor | Processor =
< #1 #2 %
» | Inst. Decode & Data @ " = e
}1 Rename Cache = b o =
© o 2 ©
z (32 KB) .§ e o £
D-Cache #1 (BK) | D-Cache #2 (8K}

o - O 21mm | o [5ache 738K} | D-Cache #4 8K, 2 S
§ | Reorder Buffer,) g = 3
) Instruction Queues, = % O O %

and Out-of-Order Logic | O O S $)
= c Processor | Processor | E c
= O #3 #4 £ o

P O

£ (&)

Floating Point N

Unit
| Y I-Cache #3 (BK) | I-Cache #4 (&K)

Figure 3. Floorplan for the four-way single-chip
multiprocessor.

Figure 2. Floorplan for the six-issue dynamic superscalar
MiCroprocessor.

40

Multi-Core vs. Large Superscalar+Oo0O

* Multi-core advantages

+ Simpler cores Bl more power efficient, lower
complexity, easier to design and replicate, higher
frequency (shorter wires, smaller structures)

+ Higher system throughput on multiprogrammed
workloads [reduced context switches

+ Higher system performance in parallel applications

41

Multi-Core vs. Large Superscalar+Oo0O

* Multi-core disadvantages

- Requires parallel tasks/threads to improve
performance (parallel programming)

- Resource sharing can reduce single-thread
performance

- Shared hardware resources need to be managed

- Number of pins limits data supply for increased
demand

42

Comparison Points...

6-way SS 4x2-way MP
of CPUs 1 -
Degree superscalar 6 4x2
of architectural registers 32int / 324p 4 x 32int / 324p
of physical registers 160int / 160fp 4 x 401nt / 401fp
of integer functional units 3 4x1
of floating pt. functional units 3 4x1
of load/store ports 8 (one per bank) 4x1
BTB size 2048 entries 4 x 512 entries
Return stack size 32 entries 4 x 8 entries
Instruction issue queue size 128 entries 4 x 8 entries

I cache 32 KB, 2-way S_A. 4x8KB,2-way S_A.
D cache 32 KB, 2-way S_A. 4x8KB,2-way S_A.
L1 hit time 2 cycles (4 ns) 1 cycle (2 ns)

L1 cache interleaving 8 banks N/A

Unified L2 cache 256 KB, 2-way S.A. 256 KB, 2-way S_A.

L2 hit time / L1 penalty 4 cycles (8 ns) 5 cycles (10 ns)

Memory latency / L2 penalty 50 cycles (100 ns) 50 cycles (100 ns)
PRV R e N g NS

43

Why Multi-Core?
e Alternative: Bigger caches

+ Improves single-thread performance transparently to
programmer, compiler

+ Simple to design

- Diminishing single-thread performance returns from
cache size. Why?

- Multiple levels complicate memory hierarchy

44

Cache vs. Core

Number of Transistors

Cache

B Microprocessor

Time

45

Why Multi-Core?

e Alternative: (Simultaneous) Multithreading
+ Exploits thread-level parallelism (just like multi-core)
+ Good single-thread performance with SMT
+ No need to have an entire core for another thread
+ Parallel performance aided by tight sharing of caches

46

Why Multi-Core?

e Alternative: (Simultaneous) Multithreading

- Scalability is limited: need bigger register files, larger
issue width (and associated costs) to have many
threads Bl complex with many threads

- Parallel performance limited by shared fetch
bandwidth

- Extensive resource sharing at the pipeline and
memory system reduces both single-thread and
parallel application performance

47

Why Multi-Core?

e Alternative: Integrate platform components on
chip instead

+ Speeds up many system functions (e.g., network
interface cards, Ethernet controller, memory
controller, I/O controller)

- Not all applications benefit (e.g., CPU intensive code
sections)

48

Why Multi-Core?

e Alternative: Traditional symmetric
multiprocessors

+ Smaller die size (for the same processing core)
+ More memory bandwidth (no pin bottleneck)

+ Fewer shared resources [2 less contention between
threads

49

Why Multi-Core?

e Alternative: Traditional symmetric
multiprocessors

- Long latencies between cores (need to go off chip)
shared data accesses limit performance [parallel
application scalability is limited

- Worse resource efficiency due to less sharing Bl worse
power/energy efficiency

50

Why Multi-Core?

e Other alternatives?
— Clustering?
— Dataflow? EDGE?
— Vector processors (SIMD)?
— Integrating DRAM on chip?
— Reconfigurable logic? (general purpose?)

51

Review next week

e “Exploiting ILP, TLP, and DLP with the
polymorphous TRIPS architecture”, K.
Sankaralingam, ISCA 2003.

52

https://scholar.google.com/scholar?oi=bibs&cluster=7563235349873311739&btnI=1&hl=en
https://scholar.google.com/scholar?oi=bibs&cluster=7563235349873311739&btnI=1&hl=en

Summary: Multi-Core Alternatives

* Bigger, more powerful single core

* Bigger caches

* (Simultaneous) multithreading

* Integrate platform components on chip instead
 More scalable superscalar, out-of-order engines
* Traditional symmetric multiprocessors

* And more!

53

Multicore Examples

54

Multiple Cores on Chip

e Simpler and lower power than a single large core

Intel Core i7 IBM Cell BE

M Barcelon 8 cores 8+1 cores
_4 cores

Tilera TILE Gx

Sun Niagara |l 448 “cores” 48 cores, networked 100 cores, networked
8 cores

Nvidia Fermi Intel SCC

[o= N e~

55

With Multiple Cores on Chip

e What we want:

— N times the performance with N times the cores
when we parallelize an application on N cores

* What we get:
— Amdahl’s Law (serial bottleneck)
— Bottlenecks in the parallel portion

56

The Problem: Serialized Code Sections

 Many parallel programs cannot be parallelized
completely

* Causes of serialized code sections
— Sequential portions (Amdahl’s “serial part”)
— Critical sections
— Barriers
— Limiter stages in pipelined programs
e Serialized code sections
— Reduce performance
— Limit scalability
— Waste energy

57

Demands in Different Code Sections

 What we want:

* |In a serialized code section Bl one powerful “large” core
* |In a parallel code section Bl many wimpy “small” cores
* These two conflict with each other:

— If you have a single powerful core, you cannot have many
cores

— A small core is much more energy and area efficient than a
large core

58

“Large” vs. “Small” Cores

Large I
Core Cor

e

e Qut-of-order e In-order

e Wide fetch e.qg. 4-wide .

e Deeper pipeline Narrow Fe.tch.e.g. 2-wide

e Aggressive branch * Shallow pipeline
predictor (e.g. hybrid) « Simple branch predictor

e Multiple functional units (e.g. Gshare)

e Trace cache

e Memory dependence
speculation
4)

Large Cores are power inefficient:
e.g., 2x performance for 4x area (power))
_

 Few functional units

Meet Small: Sun Niagara (UltraSPARC T1)

* Kongetira et al., “Niagara: A 32-Way Multithreaded
SPARC Processor,” IEEE Micro 2005.

Sparc pipe : 3 DDR
way MT -] Dé::: :r:.‘re.jtool s

L2 BO 7

Sparc pipe - ———

4-way MT

Sparc pipe DDR

d-way MT - - DE‘:Im t1 I iy
L2 B1

Sparc pipe -

4-way MT a

Sparc pipe S DDR

4-way MT - - D;Z t2 | e
L2 B2

Sparc pipe -

4-way MT

Sparc pipe 3 DDR

4-way MT F=5 Doé;]rzﬁne’ta | e
L2 B3

Sparc pipe -

4-way MT

[}
Y |- YyvYyeyy

/O interface

Niagara Core

* 4-way fine-grain multithreaded, 6-stage, dual-issue in-order
 Round robin thread selection (unless cache miss)
e Shared FP unit among cores

| l I l | |

Fetch Thread select Decode Execute Memory Writeback
—
Register |
file |
T x4 ‘
| [P, 1
ICache | | Instruction [T DCache -
LB | " | bufferx 4 | Thread ALU ;
(. MUL DTLB Crossbar
| select [~#=| Decode [~ Shifter | store interface
e [S B ¥ 7T - ! buffers x4
— J DIV ‘ -

c -
~+—— |nstruction type
Thread selects Thread | Misses

select 5
-a—— Traps and interrupts

logic
-4 Resource conflicts
"7—‘;

PC
logic
x4

|
]
-

01

Niagara Design Point

Table 1. Commercial server applications.

Instruction-level Thread-level Working Data
Benchmark Application category parallelism parallelism set sharing
Web38 Web server Low High Large Low
J3B Java application server Low High Large Medium
TPC-C Transaction processing Low High Large High
SAP-2T Enterprise resource planning Medium High Medium Medium
SAP-3T Enterprise resource planning Low High Large High
TPC-H Decision support system High High Large Medium
el v B m & w
WPE M € MC M |e=
TLP|C M '
(on shared = . Time saved
singleissue €M -
pipeline) T M
: -

) Memory latency [Compute latency

62

Meet Small: Sun Niagara Il (UItraSPARC T2)

8 SPARC cores, 8
_ threads/core. 8 stages. 16 KB
: . L2D_ata r—_‘ e . ' e | |$ per Core. 8 KB D$ per
Bl - Banko - |[EESRAN BN ERRRE £SO | Core. FP, Graphics, Crypto,
coroats. SR st fo s | units per Core.

Bank 1 |
L2B1 Bpip 2 2 B

e Bl| EELe e L o . * 4 MB Shared L2, 8 banks,
S L TAGHE PTAGE T— 16-way set associative.

TEI8 | . 4 dual-channel FBDIMM

Bank 7
| uzms memory controllers.
L2 Data

Bank 6

SPhR% SPARGE HPAAC SPARE. X8 PCI-Express @ 2.5 Gbls.

. L2
GaN TAG7 TAG6

*Core 2 “Cor@ & ~Core " CC-!‘.”»)‘é" RDP TDS

 Two 10G Ethernet ports @
3.125 Gb/s.

63

Meet Small, but Larger: Sun ROCK

* Chaudhry et al., “Simultaneous Speculative Threading: A Novel Pipeline
Architecture Implemented in Sun's ROCK Processor,” ISCA 2009

* Goals:
— Maximize throughput when threads are available

— Boost single-thread performance when threads are not
available and on cache misses

e |deas:

— Runahead on a cache miss B ahead thread executes

miss-independent instructions, behind thread executes
dependent instructions

— Branch prediction (gshare)

04

Sun ROCK
1l | | 1 .

16 cores, 2 threads per
core (fewer threads

than Niagara 2)

e 4 cores share a 32KB
instruction cache

e 2 cores share a 32KB
data cache

e 2MB L2 cache (smaller
than Niagara 2)

More Powerful Cores in Sun ROCK

72 HWS
M SST
& 000

g TVIDNININOD
M Jcc VS
N Ao

B JCC 4110

B 1V DNAININOD

B 8 dVS
ds gdr
Ml d8 dL10
SESESESR E R R
QO QO O O O QOO
NV~ O W =N N -

TIVLS 1OA0 JUWDAOIAW] OURULIOJId]

Commercial Performance.

Figure 9

066

Meet Large: IBM POWER4

* Tendler et al., “POWER4 system microarchitecture,” IBM J R&D,
2002.

* Another symmetric multi-core chip...
* But, fewer and more powerful cores

L ¥ }MCM-MCM

IE2

168 -
} (3:1)

67

IBM POWER4

* 2 cores, out-of-order execution

* 100-entry instruction window in each core
e 8-wide instruction fetch, issue, execute

* Large, local+global hybrid branch predictor
 1.5MB, 8-way L2 cache

* Aggressive stream based prefetching

68

IBM POWERS

= Kallaetal., “IBM Power5 Chip: A Dual-Core Multithreaded Processor,” IEEE Micro

2004.
[o namic
5 Branch prediction] irlt)s{mction
{ selection Gl
Shared ¢
Program Branch| Ji| Return| | Target lasiia execution
counter nistory | | stack | | cache queues units
tables LSUO Data Data
-_— [FXuo) Translation Cache
instruction LSU1 |
. buffer 0 Group formation - - = - 3
Instruction |FXU1|
cache Instruction decode — ¢ : P e
Dispatch FPUD!
Instruction
translation ::S
Thread CAL Data Data
priority Shared- Read Write translation | |cache
reqister shared- shared- =s
mappers register files register files L2
cache

[__)Shared by two threads [[___] Thread O resources [l Thread 1 resources

Figure 4. Power5 instruction data flow (BXU = branch execution unit and CRL = condition register logical execution unit).

69

Large, but Smaller: IBM POWERGb

Le et al., “IBM POWERG6
microarchitecture,” IBM J R&D,
2007.

2 cores, in order, high frequency
(4.7 GHz)

8 wide fetch

Simultaneous multithreading in
each core

Runahead execution in each core

— Similar to Sun ROCK

70

POWERS chip

High-
frequency
POWERS

SMT2

core

High-
frequency
POWERS

SMT2

core

A

Lo

POWERS chip

~2-MB L2

16-MB
L3
controller

SMP interconnect
fabric

36-MB L3 chip

1

Memory controller

I

BufYer
chips

Ultrahigh-
frequency
POWERS6
SMT2
core

Ultrahigh-
frequency
POWERG6
SMT2
core

i |

|

4-MB L2

4-MB L2

AN

ra

32-MB
L3
controller

———

—

SMP interconnect
fabric

32-MB L3 chip(s)

I

]

Memory
controller

Memory
controller

|

|
1

1

BufTer
chips

Buffer

chips

Many More...

* Wimpy nodes: Tilera
 Asymmetric multicores

* DVFS

Computer Architecture Today

* Today is a very exciting time to study computer
architecture

* Industry is in a large paradigm shift (to multi-core,
hardware acceleration and beyond) — many different
potential system designs possible

* Many difficult problems caused by the shift
— Power/energy constraints B multi-core?, accelerators?
— Complexity of design B multi-core?
— Difficulties in technology scaling Pl new technologies?
— Memory wall/gap
— Reliability wall/issues
— Programmability wall/problem & single-core?

72

Computer Architecture Today (2)

* These problems affect all parts of the computing stack —
if we do not change the way we design systems

Problem

Algorithm

Program/Languag

N4

Runtime System
(VM, OS, MM)

ISA

Microarchitecture
Logic

Circuits
Electrons

73

Computer Architecture Today (3)

* You can revolutionize the way computers are built, if you
understand both the hardware and the software

* You can invent new paradigms for computation,
communication, and storage

e Recommended book: Kuhn, “The Structure of Scientific
Revolutions” (1962)
— Pre-paradigm science: no clear consensus in the field

— Normal science: dominant theory used to explain things
(business as usual); exceptions considered anomalies

— Revolutionary science: underlying assumptions re-examined

74

... but, first ...

e Let’s understand the fundamentals...

* You can change the world only if you understand
it well enough...

— Especially the past and present dominant paradigms
— And, their advantages and shortcomings -- tradeoffs

75

CSC 2224: Parallel Computer
Architecture and Programming
Parallel Processing, Multicores

Prof. Gennady Pekhimenko
University of Toronto
Fall 2019

The content of this lecture is adapted from the lectures of
Onur Mutlu @ CMU

Asymmetric Multi-Core

Asymmetric Chip Multiprocessor (ACMP)

Small | Small | Small | Small Small | Small

Large Large core core core core Large core core
core core Small | Small | Small | Small core Small | Small
core core core core core core

Small | Small | Small | Small Small | Small | Small | Small

L arg e L arg e core core core core core core core core
core core Small | Small | Small | Small Small | Small | Small | Small
core core core core core core core core

“Tile-Large” “Tile-Small” ACMP

* Provide one large core and many small cores
+ Accelerate serial part using the large core (2 units)

+ Execute parallel part on small cores and large core for high
throughput (12+2 units)

78

